BIOMECHANICAL SPORT ANALYSIS THROUGH DATA INTEGRATION

A. Finch¹, G. Ariel², J. Brond², A. Penny² & J. Wise² ¹Indiana State University ²Ariel Dynamics

PURPOSE

USE OF SYNCHRONIZED INTEGRATED VIDEO AND KINEMATIC DATA FOR SPORT ANALYSIS OF:

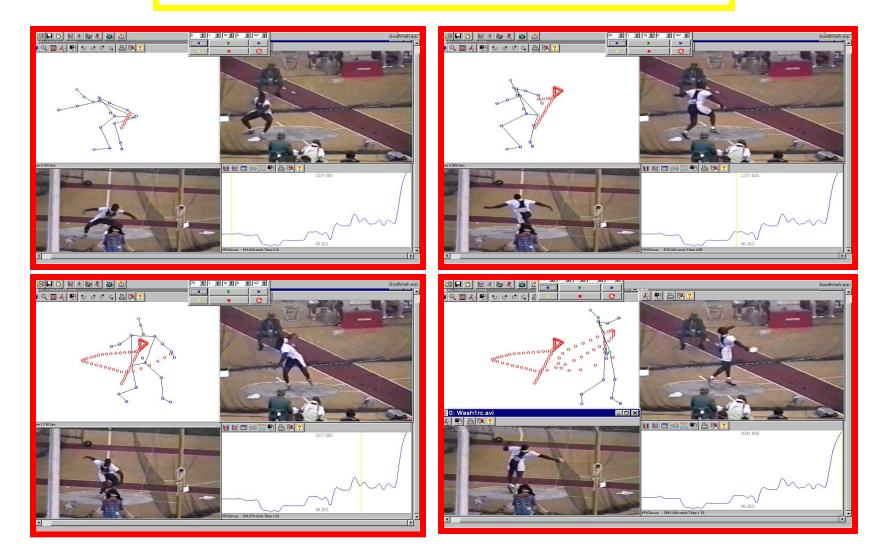
DISCUS THROWING BASKETBALL FREE THROW SHOOTING HIGH JUMPING.

Project 1 Discus Throwing

The best and worst discus attempts by A. Washington (USA), 4th place competitor at 1996 Atlanta Olympic Games were analyzed from 2 camera views

PROCEDURES

21 data points were digitized and transformed to real distances and smoothed at 10 Hz frequency cutoff with an second order Butterworth digital filter.


Calibration Cube

Washington Throwing Kinematics

Attempt	Distance m.	Velocity cm•sec ⁻¹	Projection Angle rad (deg)	Release HT cm	Move Time sec
Best Throw	65.4	2541V _r 2134 V _x	.52 (29.9)	120	1.2
Worst Throw	61.3	2441 V, 1222 V _x	1.05 (59.9)	140	1.4
% Change	-6.3%	-4.0% V _r -43.0% V _x	+100%	+17%	+12%

Discus APAS view Data Integration

Technique Comparison

Horizontal Shoulder Angular Velocity

Attempt	Max Angular Horizontal Shoulder Velocity rad•s ⁻¹	Shoulder Ang Velocity at Release rad•s ⁻¹	
Best Throw	26.1	13.7	
Worst Throw	20.1	11.2	
% Change	-23%	-18%	

Discus Conclusions

- The poor attempt had a -4% slower resultant disc velocity and a decrease of 43% in horizontal velocity.
- The poor attempt was released at 100% steeper angle.
- Horizontal angular shoulder velocity was 18% slower at release for the poor throw.

Analysis Results Reviewed with Athlete at Olympic Training Session

Project #2 Basketball Free Throw Shooting

- Video records from frontal & sagittal views were taken of Indiana State University Women's Basketball Team while shooting free throws during conference competition.
- Data was digitized, transformed, and digitally smoothed (10 hz) to real distances.

Shooting Variables Calculated

- From the 3-D information, the athlete's ball projection velocity and angle for a successful and missed attempt.
- The shooter's elbow and shoulder angular velocities were calculated along the sagittal plane

Shooting Trajectory Data

Attempt	Ball Proj Velocity cm•sec ⁻¹	Ball Release Angle rad	
Shot Made	399	1.1	
Shot Missed	489	.9	
% Change	+23%	-18%	

Joint Angular Velocities

Attempt	Shoulder Angular Velocity rad•sec ⁻¹	Elbow Angular Velocity rad•sec ⁻¹	
Shot Made	8.8	15.2	
Shot Missed	11.1	29.2	
% Change	+26%	+92%	

Shooting Data Integration

CONCLUSIONS

- The missed shot was caused by a fast release velocity, flat release angle.
- Angular velocities were higher for the missed shot. Faster shoulder (26%) and elbow (92%) angular velocity was determined for the missed shot.

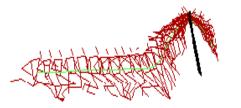
The shooter pulled their hand back at release

ISU BBall view Demo

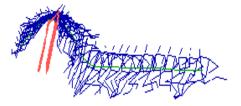
Project #3 High Jumping

- Simultaneous video records from a front right and left side viewing perspective were collected of a high jumping practice attempt (2.29m) of an elite collegiate high jumper.
- Data was digitized, transformed, and digitally smoothed at 10 Hz.
- The vertical displacements and vertical velocities of the body CM were calculated.
- Integrated data analysis of video and kinematic data was performed.

High Jump CM Vertical Velocity

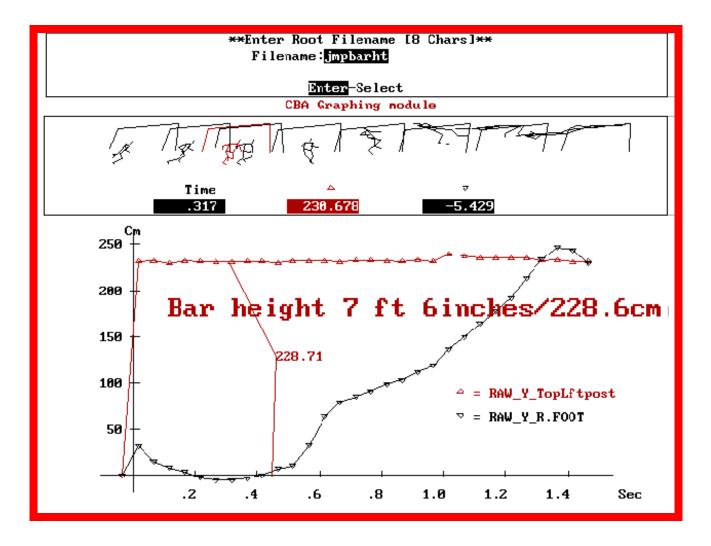

High Jump Technique

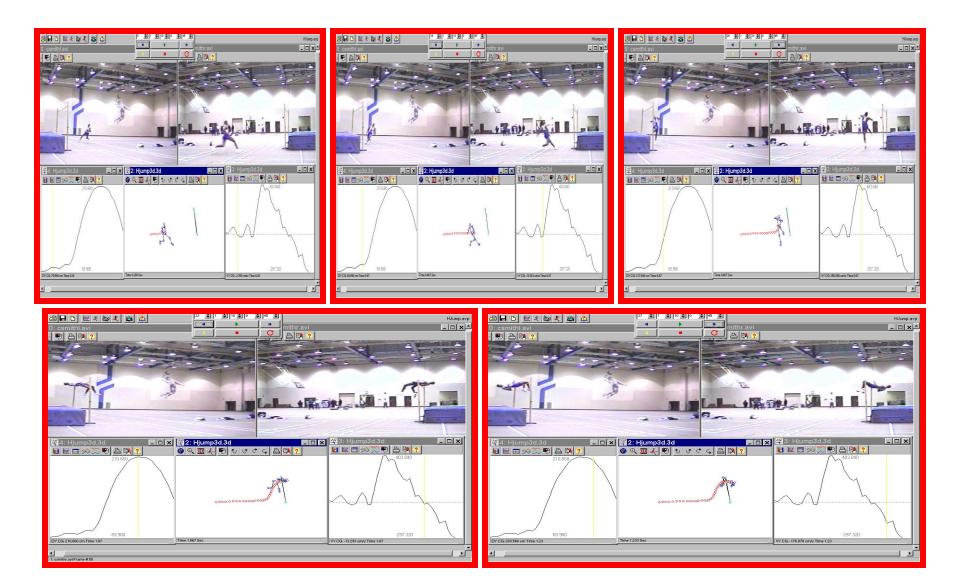
Enter Root Filename [8 Chars] Filename:<mark>hjumppat</mark>


Enter-Select

VIEWING Module C.B.A. Inc.

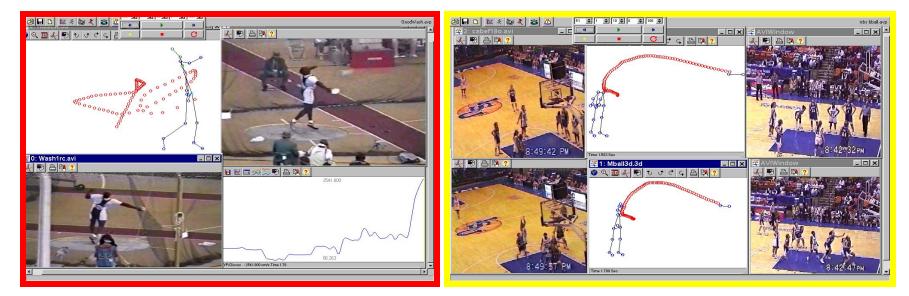
High Jump Smith 7ft 6 in

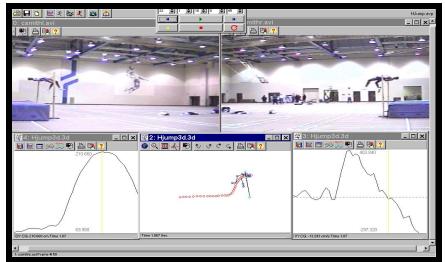

View from Right


View from Right

Jump Height Verification

High Jump Integrated Data


Conclusion


- The high jumper's takeoff occurred too far out from the bar but he adjusted his projection angle to peak over the bar.
- The high jumper's CM was at its apex during bar clearance. The CM passed
 18 cm below the 2.28 m bar height.
- The jumper utilized a hip pike- hip drop maneuver to facilitate leg clearance

High Jump APAS view Demo

Project Conclusion

Integration of kinematic data and video views on a synchronized time base using the Ariel APAS view software is an effective method to visually and quantitatively to analyze sport performance.

Thank You